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Introduction

The original purpose of this project was to learn

some methods in graph theory and then apply them

to the study of network reliability. The project pro-
ceeded far enough to produce some original material
in two areas. The first area is the extensive study

of braided networks, which includes a comparison of
braided networks and double-ring networks. These

two types of networks are described in later sections.
The second area is a study of link redundancy versus

path redundancy as a means of achieving reliability.
These two concepts are also explained later.

In response to the increased usage of distributed

computer systems, interest in network analysis tech-

niques has greatly expanded. In a fault-tolerant

network, interest is often focused on maintaining an

operational path between each pair of nodes in the

network, that is, ensuring that all nodes are con-

nected, despite failure of some of the connecting

links. The probability that a network is connected is
known as all-terminal reliability, Which is equivalent

to fnding the probability that the network contains
at least one minimal spanning tree.

The important role that networks play in fault-

tolerant systems mandates that techniques and tools

be developed to aid in the analysis process. However,

the development of effective and efficient techniques

is hindered by the inherent computational difficulty

in solving network problems. In fact, Ball has shown
that network reliability problems are at least as diffi-

cult to solve as computationally hard, NP-Complete

problems such as the famous traveling salesman prob-
lem (ref. 1). Consequently, most available analysis

techniques primarily consist of approximation and

bounding methods.
Presented in this paper are some basic combina-

torial techniques from graph theory that are useful

in the reliability analysis of networks. The basic as-

sumption throughout this study is that a network

is fully operational as long as it remains connected;

and, the purpose of applying elementary techniques

is simply to consider the concept of connectivity un-

encumbered by sophisticated mathematical methods

and the special characteristics of individual systems.
The methods presented are exact with the excep-

tion of approximations used in solving fault trees.

That is, the formulas for the probability of network
failure use no approximations. All the techniques

used are standard procedures which can be found

in textbooks (Swamy and Thulasiraman (ref. 2),

Christofides (ref. 3), and Prather (ref. 4)).
Given a set of nodes and links, a variety of ar-

chitectures can be configured. Although the same

number of nodes and links are used, certain configu-

rations can tolerate more link faihlres while preserv-

ing connectivity; hence, different architectures can
have different reliabilities. The methods presented

in this paper allow comparisons based on reliability

to be made among different architectures. The study

concentrates on the comparison of two distinct net-
work architectures, the double-ring network and the

braided network. The ring architectures are popular,

and the braided network has local interest at Langley

Research Center.

In the next section, the combinatorial approach

to computing the reliability of networks is described.

First, limitations of combinatorial methods are pre-

sented, followed by a discussion of minimal spanning
trees and of the fact that, in general, reliability is not

directly related to the number of minimal spanning
trees in a network. The use of a fault tree program

to compute the reliability of networks by means of

minimal spanning trees is also discussed.

The next four sections cover the work performed.

There is a comparison of double-ring and braided

networks where only the links fail, followed by a

comparison of the two configurations where both
links and nodes fail. Also dealt with are directed

links (where each link can only carry a message one

direction) and links that fail in a faulty manner as

opposed to being either operative or inoperative. In

this case, a failed link transmits incorrect messages,

and system survival depends on each node being
connected by a majority of good links. The final

section gives some concluding observations.

Synopsis of Combinatorial Methods

As mentioned in the introduction, developing effi-

cient algorithms for solving network reliability prob-
lems has been proven difficult. A well-known dis-

advantage to using exact combinatorial methods for

computing the reliability of networks is that the com-

putational burden increases dramatically with the
size of the network and quickly overwhelms even the

most generous computational resources. Neverthe-

less, developing these exact methods has value. Many

existing approximation methods must still consider
the connectedness of the network, and exact methods

have produced useful algorithms for determining con-
nectedness. Other mathematical techniques, such as

partitioning and conditional probabilities, originally
used for exact solutions, might also be adapted for

use in the more sophisticated approximation meth-

ods. Moreover, performing the simple calculations on

modest networks gives the analyst a feeling for the



problemalongwith anappreciationforthedifficulty
in solvingit.

Limitations

The methods considered in this study assume that

a network survives or remains operational as long as
there are enough good components to remain con-

nected. This definition naturally lends itself to study
by combinatorial methods. This paper first examines

networks that experience link failures but no node
failures and then deals with models that include both

node and link failures. These models allow networks

to survive the failure of a large number of compo-

nents. In reality, tile decision algorithms of an oper-

ating system are likely to break down after only a few
components have failed since there may be too much

overhead used in storing and running decision algo-
rithms that can handle all the contingencies associ-

ated with numerous failures. Within this context, the

reliability results presented in this paper are likely to
be optimistic; yet, valid, qualitative comparisons can
still be made between real-world network architec-

tures like the double-ring and braided networks.

The reliability aspect of the network problem is

considered without regard for performance issues.

Consequently, a network that appears highly reliable

might have to be rejected, in practice, because its

complex topology does not permit efficient routing
algorithms. There are also some disadvantages inher-

ent in using combinatorial methods (either exact or

approximate) for computing system reliability. Com-

binatorial methods cannot capture the dynamic fea-
tures of a system, so there can be no consideration

of fault latency or path-regrowing time. Combina-

torial Inethods also underestimate the probability of
system failure because they do not take into account

the problems created by the time lag of a system rec-
ognizing and replacing failed components. Neverthe-

less, combinatorial methods provide a means of mak-
ing some important observations about basic network

reliability.

Minimal Spanning Trees

The concept of minimal spanning trees is funda-

mental to the study of connectedness. For a given
graph, a minimal spanning tree is a subset of the

links that allows all nodes in the graph to be con-
nected, with the property that no subset of the min-
ilnal spanning tree's links exists that forms a con-

nected graph. That is, failure of any single link in
the minimal spanning tree means that set of links no

longer constitutes a minimal spanning tree, i.e., it is

no longer possible to reach every node in the graph.

Given a graph with n nodes, each minimal spanning

tree for that graph will have (n - 1) links. Figure 1

is an example of a simple network; figure 2 depicts
the set of all minimal spanning trees for the network
in figure 1.

Figure 1. A simple network with bidirectional links.
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Figure 2. The set of minimal spanning trees for the network
in figure 1.

The important concept to remember is that as

long as all the links making up at least one of the

minimal spanning trees remain operational, the net-

work is connected and, hence, assumed operational.

Thus, the probability that the network fails is equiv-
alent to the probability that no operational minimal



spanningtreeexists.Theoretically,then,computing
thereliabilityof a networkisquitesimple.However,

even for networks with very few nodes (<10), the

number of spanning trees can be very large, which

makes storing the trees and finding the probability

that no operational spanning trees exists a computa-

tionally demanding task.

The number of minimal spanning trees for a net-

work can be computed without actually generating

the list of trees (ref. 3). Figure 3 shows a double-ring,

a two-braid, and a three-braid network. In the two-

braid network, the inner links connect every second

node instead of adjacent nodes. In the three-braid
network the inner links connect every third node.

Table I. Number of Minimal Spanning Trees for Double-Ring,

Two-Braid, and Three-Braid Network Configurations

Number of nodes

5

6

7

8

9

10

11

Number of minimal spanning trees

Double ring

80

192

448

1 024

2 304

5 120

11 264

Two braid

125

384

1 183

3 528

10 404

30 250

87 131

Three braid

1 183

4 096

12 321

40 500

130 691

0 0

\/

(a) Double ring.

(b) Two braid.

(c) Three braid.

Figure 3. Three network configurations considered in present

paper.

Table I contains the number of minimal spanning

trees for each of the configurations above as the
number of nodes varies from 5 to 11.

Although two networks have equal numbers of
nodes and links, the links can be arranged in a variety
of architectures such that the two networks have

different numbers of minimal spanning trees, as in

figures 4 and 5. Since only one minimal spanning
tree must remain intact in order for a network to

be connected, it seems logical to assume that the

network with the larger number of minimal spanning
trees will be the more reliable of the two. Network

reliability would appear to be proportional to the

number of spanning trees.

Figure 4. A network with 16 minimal spanning trees.

Figure 5. A network with 13 minimal spanning trees.
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Thenetworkin figure4has16minimalspanning
treesand tile networkin figure5 has13minimal
spanningtrees. Basedon the numberof spanning
trees,it wouldappearthat thenetworkin figure4 is
morereliablethantile networkin figure5. However,
a singlelink failure,failureof link 1, will isolatea
nodein figure4 whereasit takesfailureof at least
two links to isolatea nodein figure5. Thus,the
networkin figure5ismorereliablethanthenetwork
in figure4 sinceits cutset(the numberof links it
takesto isolatea node) is larger than the cutset
of the networkin figure4. Computationsreveal
that whentile probabilityof link failureis 10-2the
probabilityof failurefor the networkin figure4 is
1.0004x 10-2 andtheprobabilityof failurefor the
networkin figure5 is5.9206x 10-4.

Therefore,networkreliabilitycomparisonscannot

be made based oll the number of minimal spanning

trees. A monotonic relationship between reliability

and the number of minimal spanning trees may hold

for symmetric networks, examples of which will be

discussed later, but there is no proven result about

a general monotonic relationship. This counter-

example is unfortunate since the method of comput-

ing the number of minimal spanning trees is easy,
while obtaining all tile minimal spanning trees is
difficult.

Fault Trees

As discussed earlier, computing the probability

that no minimal spanning tree will survive is equiv-

alent to computing the probability that the network

will fail. That is, given the complete list of mini-

mal spanning trees for a network and the probability
of failure for each link in the network, combinatorial

methods can be applied to compute the probability

of network failure. Fault tree analysis is a conve-

nient method for computing combinatorial probabil-
ities. To demonstrate the role of fault trees in com-

puting network reliability, consider the example of

figure 6.

123 124 134 135 145 234 235 245

Figure 6. Fault tree to compute the probability of network
failure for the network depicted in figure 1.

Figure 6 shows the fault tree for computing the

probability of failure of the network shown in figure 1.

The basic events, 1, 2, 3, 4, and 5, represent failures

of the individual links. Each OR gate corresponds to

a mininml spanning tree. Failure of one of the inputs

to an OR gate eliminates the associated spanning tree

as a possibility for preserving network connectivity.

The top gate, representing network failure, is an
AND gate since the network is not connected if all

the minimal spanning trees are eliminated.

Even for this small example, manually calculating
the probability of the top event is tcdious. And,

as seen in table I, the number of spanning trees

in a modest size network can be extremely large,

which would make inanual calculation of reliability
infeasible. Fortunately, computer programs have

been created to effectively perform fault tree analysis.
The Fault Tree Compiler program, developed at

Langley Research Center by Butler and Martensen

(ref. 5), employs an efficient algorithm for solving

fault trees and is used throughout this study to
provide numerical results.

Reliability When Bidirectional

Links Fail

A common assumption in network analysis is that
the links are subject to random failure and that the

nodes do not fail. From a practical viewpoint, con-

sidering only link failure implies that all processing
elements (nodes) in a network are functional but the

communication channels (links) between those pro-
cessing elements are subject to failure. A bidirec-
tional link allows communication to flow between two

nodes in either direction. Failure of the links was

studied by comparing the reliability of networks with

double-ring and braid configurations.

For this section and the next, the first step in com-
puting reliability was to generate the list of minimal

spanning trees for the networks. Because of the com-

binatorial complexity of generating these lists, the

accuracy of the results was checked by implementing

two methods of tree generation (refs. 2 and 3). An

additional check was made by using the previously
mentioned formula (ref. 3) for computing the number

of minimal spanning trees without generating them.

In all the cases, the two lists of minimal spanning

trees were identical, and the number of trees gen-

erated was correct. After generating the minimal

spanning trees, a fault tree based on the spanning

trees was created in an acceptable input format and

submitted to the Fault Tree Compiler program.
Bidirectional networks configured as braids and

double rings containing between five and nine nodes

inclusive were studied. Limited computing capacity
restricted network size to a maximum of nine nodes.
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Probabilityoflink failurewasvariedfrom10-1to 10-5. TableII containsthereliabilityresultsfromthestudy
of double-ringnetworksandtableIII containsthereliabilityresultsfor thetwo-braidnetworks.

In eachcase,the two-braidconfigurationis morereliablethan the correspondingdoublering. As the
probabilityof failureofthelinksdecreasesbyoneorderof magnitude,theprobabilityofsystemfailuredecreases
by fourordersofmagnituderegardlessof theconfigurationor numberof nodesin thenetwork.Increasingthe
numberof nodesin the networkslightlydecreasedthereliability for botharchitectures.This effectseems
reasonablesinceit is moredifficultto keepasystemfully connectedasthenumberof nodesincreases.

Reliability When Nodes and Bidirectional Links Fail
Whenboththelinksandthenodesareallowedto fail, twoassumptionsaremadefor a networkto remain

operational:(1)at leasta strict majorityof the nodesmustbeworkingand(2) all workingnodesmustbe
connected.Theseassumptionsaremadebecausetheyaresimpleandreasonable.A strict majorityof good
nodescanoutvotethecorruptdatafromthefailednodes.Thegoodnodesmustbeconnectedinorderto work
together.Tostudytheeffectsof nodeandlink failures,considerthebraidedsix-plexpicturedin figure7.

Successforthissix-plexnetworkrequiresthat nomorethantwonodesfail,sincetheremustbeat leastfour
workingnodesto maintainamajority.Thekeyto computingreliabilityfor networkswith bothnodeandlink
failuresis to considerapartitionof thesamplespacebasedonthenumberof nodefailures.Figure8 showsthe
fivepossiblesuccessfularchitecturesforthenetworkin figure7.

TableII. ReliabilityResultsfor Double-RingNetworks

[L = Probability of link failure]

Probability of system failure

Number
of nodes L = 10 -1 L = 10 .2 L = 10 .3 L = 10 .4 L -- 10 -5

0.980150 x 10 .3 0.999800 xl0 -7

1.46045 1.49960

2.03104 2.09912

2.69008 2.79887

3.43573 3.59832

!0.999998 x 10 -11

1.49996

2.09999

2.79999

3.59998

0.999410 x lO -15

1.50000
2.10000

2.80000

3.60000

0.999941 x 10 -19

1.50000

2.10000

2.80000

3.60000

Table III. Reliability Results for Two-Braid Networks

[L = Probability of link failure]

Probability of system failure

Number
of nodes L = 10 -1 L = 10 .2 L = 10 -3 L = 10 -4 L = 10 -5

5

6

7

8
9

5.07758 x 10 .4

6.13153
7.17702

8.13132

9.29784

5.00098 x 10 -s

6.00157

7.00205

8.00272

9.00018

5.00001 x 10 -12

6.00002

7.00002

7.99948

8.99919

5.00000 x 10 -16

6.00000

7.00000
7.99999

8.99999

5.00000 x 10 .20

6.00000

7.00000

8.00000

9.00000
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Figure 7. Two-braided six-plex.

Figure 8 depicts the possible architectures for

a braided six-plex when a strict minority of nodes

fail and the links attached to a failed node are

no longer operational (and are removed from the

diagram). There is only one architecture for zero

failed nodes and one architecture for one failed node.

The network is complex enough that there are three

architectures possible when two nodes fail. The

probability of each of these three architectures, given

two failed nodes, is simply a ratio

P{architecture I, given two failed nodes} - 6/15 = 2/5

P{architecture II, given two failed nodes} = 6/15 = 2/5

P{architecture III, given two failed nodes} = 3/15 -- 1/5

If the probability of a node failure is defined to be
v, the probability that n out of six nodes will fail is
given by the combinatorial formula

6) v"(1 - v) 6-'_
irl

where

6_

The formula for computing network failure F
using the partition on the number of node failures
is

P{F} = P{F, given zero fail} P{zero fail}

+ P{F, given one fails} P{one fails}

+ P{arch. I fails} P{arch. I, given two fail} P{two fail}

+ P{arch. II fails} P{arch. II, given two fail} P{two fail}

+ P{arch. III fails} P{arch. III, given two fail} P{two fail}

+ P{three or more fail}

6

(a) Zero failed nodes.

(b) One failed node.

(c) Two failed nodes: architecture I. Adjacent nodes fail

(six cases).

0

(d) Two failed nodes: architecture II. Failed nodes separated

by one node (six cases).

O O

(e) Two failed nodes: architecture III. Failed nodes separated

by two nodes (three cases).

Figure 8. The five possible architectures for a two-braided

six-plex when links are removed because of node failures.



Figure 9 shows the probability of network failure
for braids containing five to nine nodes, and figure 10

shows corresponding double-ring computations. In

this study, probability of link failure was held con-
stant at 10 .2 , and probability of node failure ranged

from 10 -1 to 10 -4. The data for figures 9 and 10 are

presented in the appendix.

10 0

__ io-2

10_4

"6

10 .6

o..

10-8
5

Probability of

node failure_10-1

__t1_10-2

Number of nodes in graph

Figure 9. Probability' of network failure for two-braid
networks.
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10 1

_10 -2

10-3

10-4

I I i i
10 5 6 7 8 9

Number of nodes in graph

Figure 10. Probability of network failure for double-ring
networks.

The double-ring networks behave as expected; as
the number of nodes increases, the probability of

system failure slightly increases. The behavior of the

two-braid networks, especially when the probability
of node failure is large, is not as easily explained.

Part of the variation can be attributed to requiring a

strict majority of nodes to be operational for system
survival. For instance, in the six-node networks, four

nodes must be working for the system to survive.
Four nodes are also needed for survival of seven-

node networks. Thus, it is easier to have the strict

majority of nodes working in networks with an odd
number of nodes; hence, the probability of system

failure decreases at these points. This decrease is

more profound when the probability of node failure is

relatively high, since node failures would play a more

prominent role in causing system failure. This strict

majority phenomenon does not have much influence
on the double-ring networks because a double-ring

network will almost always fail from node failures

long before a majority of nodes fail. For example,
two node failures will cause the failure of a double-

ring network unless the two failed nodes are adjacent.

Reliability When Unidirectional Links

Fail

For the systems discussed in this section, a link
consists of a transmitter, a line, and a receiver. Mes-

sages are sent in only one direction on each link. The
criterion for network survival is that all the nodes

be able to send and receive messages to each other.

Unlike the minimal spanning sets for bidirectional

networks, minimal spanning sets for unidirehtional

networks may contain minimal spanning trees with
different numbers of elements. Consider the network

in figure 11 and two of its minimal spanning trees

pictured in figure 12.

o_ o

_oo_

Figure 11. A network with unidirectional links.

A method for generating the list of spanning trees
for a unidirectional network is to create a relational

matrix from the description of the network and then

compute reaehability for each node in the network

(ref. 4). Evaluating a fault tree patterned after these

spanning sets, just as with the minimal spanning

trees of previous sections, will result in network

reliability figures.

This study of unidirectional networks considered
two-braid networks and double-ring networks con-

taining five to seven nodes inclusive. Figure 13

depicts four link arrangements in order of decreas-

ing reliability. The most reliable network is the
eorot ational double ring. The next most reliable is

the eorotational two braid, followed by the counter-
rotational two braid. The least reliable is the

eounterrotational double ring. Table IV gives the

numerical results for the reliability of each of these

architectures.

7



©

I

_O

0_ r (3

O_ r O

Figure 12. Two minimal spanning trees for the network in

figure 11.

As seen in the study of bidirectional links, in-
creasing the number of nodes slightly increased the
probability of failure. Among the configurations with
the same number of nodes, the corotational ring con-
figuration is the most reliable. Differences between
the corotational and counterrotational braids were
minute. And, in general, there was less than one or-

der of magnitude difference in reliability among any
of the networks.

Table IV. Reliability Results fi)r Networks With

Unidirectional Links

Number

of nodes

Network

configuration

Corotational ring

Counterrotationat ring

Corotational braid

Counterrotational braid

Corotational ring

Counterrotational ring

Corotational braid

Counterrotational braid

Corotational ring

Counterrotational ring

Corotational braid

Counterrotational braid

Probability of

system failure

{).499900 × 10 -3

1.94060

0.989755

{}.989755

0.599850 x 10 -3

2.88194

1.18947

1.19509

(}.699790 × 10 -3

3.99465

1.38538

1.39843

//
Corotational double-ring

Corotational two-braid

Counterrotational two-braid

O_ vC)

Counterrotational double-ring

Figure 13. Four unidirectional link configurations.



Reliability With Faulty Links in

Bidirectional Networks

In the previous sections, links were viewed as ei-

ther operative (sending correct messages) or, through

failing, inoperative (failing to send any message).
This section considers faulty links, which are links

that fail by transmitting incorrect messages. In this

case, the assumption is that system survival depends

on the connectivity of the nodes and, additionally,
on each node having a majority of good links. The

idea of a faulty link, rather than absolute failure, may

more realistically model the behavior of communica-
tion links.

In fault-tolerant computer systems, redundancy is

a common technique used to achieve higher reliabil-

ity. In networks, redundancy can be implemented on
different levels. This section compares two methods

of providing redundancy: link redundancy and path

redundancy.

In link redundancy the network is connected by a

single path, where each segment of the path consists
of redundant links. For example, if each segment

consists of three links, then the segment fails if two

or three of the links fail. If the probability of link

failure is p, then the probability of segment failure s

is

s = 3p 2(1 - p) +p3

Figure 14(a) displays a ring where each segment
between nodes consists of three links and each link

has probability of failure p. Figure 14(b) displays the

same ring, indicating just the segments where each
segment has probability of failure s = 3p2(1 -p) +p3.

Since this network fails if two or more segments fail,

the probability of network failure is

P{network failure} = 1 - P{zero failed segments}

- P{one failed segment}

= 1-(l-s) 6-6s(1-s) 5

where s is the probability of segment failure given

above.

When using path redundancy, the links connect-

ing two nodes can be considered as belonging to dif-
ferent levels. Figure 15(a) displays three levels. The

links in the first level are represented by solid lines,

in the second level by dotted lines, and in the third

level by broken lines. The links in each level attempt
to form a minimal spanning tree. Different levels

can have different spanning trees. Figure 15(b) dis-

plays three different spanning trees for the links in

figure 15(a).

oS° o

(a) Individual links.

O

O O

O

o

(b) Links combined into segments.

Figure 14. Link redundancy for a ring network with six nodes.

When computing the reliability using path redun-

dancy, the first step is to calculate the probability of

having a spanning tree for each level. The second
step is to calculate the probability that a majority

of levels have a spanning tree. For the network in

figure 15(a), a ring network with three levels, a level

will not have a spanning tree if two or more links

fail. If the probability of a link failure is p, then the

probability of a "level" failure Q is

Q = 1 - P{zero link failures} - P{one link failure}

= 1- (1-p)6-6p(1-p)5

The probability of network failure is the probability
that two or three levels fail, which is

P{F} = 3Q2(1 - Q) + Q3

9
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(a) Three-level six-plex.
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formation Processing System (AIPS) (ref. 6). The
baseline architecture of the AIPS network consists of

three rings. Each ring has five nodes and two extra

links connecting that ring to a computer. For the
AIPS network to remain functional, at least two of

the three rings must be connected. No analysis of

path versus link redundancy is given, though, to jus-

tify the choice of path redundancy. In fact, the study

presented in this paper is the only known comparison

of these two redundancy techniques.

A comparison of link redundancy versus path

redundancy was completed for two-braid networks

and double-ring networks having six and seven nodes.
Table V shows the probability of failure for these
networks.

Table V. Probability of Network Failure Using Link

and Path Redundancy

O

O

O

O_

tO..

I

O
I

I

I

I

.6

O"

J
O O

O O

J

(b) A spanning tree for each level of the three-level six-plex.

Figure 15. Illustration of path redundancy.

This issue of link redundancy versus path redun-
dancy appears in the design of the Advanced In-

Probability of network failure

Network Path Link

configuration redundancy redundancy

Triple redundancy

Two braid, 6 nodes 1.081 × l0 -14 4.732 × 10 -14

Two braid, 7 nodes 1.471 5.520

Double ring, 6 nodes 6.746 11.83

Double ring, 7 nodes 13.22 16.56

Fivehfld redundancy

Two braid, 6 nodes 0.2162 × 10 -20 5.649 x 10 -20

Two braid, 7 nodes 0.3433 6.591

Double ring, 6 nodes 3.372 14.12

Double ring, 7 nodes 9.252 19.77

The table shows little difference in reliability be-

tween link and path redundancy. Path redundancy
gives slightly higher, but not significantly higher, reli-

ability results for each network. Therefore, the choice

of redundancy method would be governed by design

convenience or performance considerations.

Conclusions

Despite the disadvantages of combinatorial meth-

ods and the demanding computational requirements

of network problems, using minimal spanning trees

is an effective means of performing basic reliability

analysis for small networks. Two network topics were

examined using the minimal spanning tree approach
and its generalization for directed networks. The

first topic was an examination of network reliabil-

ity when a link no longer delivered messages upon

failure. For this case, the reliability of the popular

10



double-ringandbraidednetworkswasstudiedand
comparisonsweremadefor both bidirectionaland
unidirectionallinks.Thebraidednetworksexhibited
higherreliabilitywithbidirectionallinks,whilesome
of the double-ringconfigurations,especiallythe co-
rotationalring, showedbetter reliabilitywith uni-
directionallinks. With both typesof networkcon-
figuration, the reliability of the networkslightly
decreasedasmorenodeswereadded.

Thesecondtopicwasanexaminationof network
reliabilitywhena link deliveredincorrectmessages
uponfailure.Forthis case,thestudycomparedthe
effectsoflink redundancyversuspathredundancyon
networkreliability. Althoughpathredundancypro-

ducedhigherreliabilityin eachcase,the reliability
wasonlya slightimprovementoverlink redundancy.
Thus,otherconsiderationssuchasperformanceor
engineeringrestrictionsshouldimpactthechoiceof
redundancytechnique.This analysishasdirectap-
plicationto presentfault-tolerantcomputersystems
suchastheAdvancedInformationProcessingSystem
(AIPS)that currentlyimplementspath redundancy
to achievenetworkreliability.

NASALangleyResearchCenter
Hampton,VA23665-5225
July23,1990
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Appendix

Reliability Results for Node and Bidirectional Link Failure

Thefollowingtablescontainreliability figuresfor the variousbidirectionalnetworkconfigurationswhich
resultwhenboth linksandnodesfail. Thetablescovertwobraidsanddoubleringscontainingbetweenfive
andninenodes.Tileprobabilityof link failureis 10-2 in all thetables.

Five Nodes, Two Braid

INumber ot
failed nodes

0

1

2

2

Architecture
Number of

links

10

6

3

3

Number of minimal

spanning trees

125

16

3

3
I

t Probability ofsystem failure

5.00098 x 10 -s

4.02881 x 10 -6

2.98000 x 10 .4

2.98000 x 10 .4

Probability of
architecture

1/2
1/2

Probability of
node failure

10-1

10-2

10-3

10-4

Probability of
system failure

8.583075 x 10 -3

1.038081 x 10 -5

8.277992 x 10 -s

5.203818 x 10 -8

Six Nodes, Two Braid

Number o|

failed nodes Architecture I Number oflinks

12

8

5

5

4

Number of minimal

spanning trees

384

45

8

8

4

Probability of

system failure

6.00157 x 10 -8

4.04957 x 10 -6

2.03910 x 10 -4

2.03910 x 10 -4

5.92030 x 10 -4

Probability of
architecture

2/5
2/5
1/5

Probability of
node failure

10-1

10-2

10-3

10-4

Probability of
system failure

1.587917 x 10 -2

2.024682 x 10 -5

1.079938 x 10 -7

6.247043 x 10 -8

12



Seven Nodes, Two Braid

Number of Number of Number of minimal Probability of Probability of

failed nodes Architecture links spanning trees system failure architecture

0

1

2

2

2

3

3

3

3

1

2

3

1

2

3

4

14

10

7

7

6

5

4

3

4

1183

130

21

24

11

8

3

1

4

7.00207 x 10 -8

4.06017 x 10 -6

2.03988 x 10 -4

1.06007 x 10 .4

4.03792 x 10 .4

2.03910 x 10 .4

1.02950 x 10 .2

2.97010 x 10 .2

5.92030 x 10 .4

1/3

1/3
1/3
1/5
2/5
1/5
1/5

Probability of
node failure

10-1

10-2

10-3

10-4

Probability of

system failure

2.993672 x 10 .3

1.493146 x 10 -6

1.031453 x 10 -7

7.286241 x 10 .8

Eight Nodes, Two Braid

Number of

failed nodes

0

1

2

2

2

2

3

3

3

3

3

Architecture

1

2

3

4

1

2

3

4

5

Number of

links

16

12

9

9

8

8

7

6

5

6

5

Number of minimal

spanning trees

3528

368

55

66

32

30

21

8

3

11

5

Probability of

system failure

8.00272 x 10 -8

4.08037 x 10 .6

2.04988 x 10 .4

1.06029 x 10 -4

3.05946 x 10 -4

3.07848 x 10 .4

2.03988 x 10 .4

1.02019 x 10 -2

2.01921 x 10 .2

4.03792 x 10 .4

9.80150 x 10 .4

Probability of
architecture

2/7

2/7
2/7
1/7
1/7
2/7
2/7
1/7
1/7

Probability of
node failure

10-1

10-2

10-3

10-4

Probability of

system failure

5.353379 x 10 -3

2.111147 x 10 .6

1.185008 x 10 .7

8.328735 x 10 .8
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Nine Nodes, Two Braid

Number of Number of Number of minimal Probability of Probability of
failed nodes Architecture links spanning trees system failure architecture

0

1

2

2

2

2

3

3

3

3

3

3

3

4

4

4

4

4

4

4

4

3

4

1

2

3

4

5

6

7

1

2

3

4

5

6

7

8

18

14

11

11

10

10

9

8

7

7

8

7

6

7

6

5

5

4

5

4

5

10 404

1 040

144

185

87

8

55

21

8

9

32

14

6

21

8

0

3

0

3

1

5

9.00018 × 10 -8

4.10057 × 10 -6

2.05998 × 10 -4

1.06049 × 10 -4

3.05968 × 10 -4

2.09955 x 10 -4

2.04988 x 10 -4

1.02019 × 10 -2

2.00999 x 10 -2

1.05899 × 10 -2

3.05946 × 10 -4

6.99656 × 10 -4

1.46045 × 10 -3

2.03988 × 10 -4

1.02019 × 10 -2

1.00000 x 10°

2.01921 × 10 -2

1.00000 × 10 °

2.01921 × 10 -2

3.94040 × 10 -2

9.80150 × 10 -4

1/4
1/4
1/4
1/4
3/28

3/14

3/14
3/28
3/28
3/14

1/28
1/14

1/7
1/14

2/7
1/14

1/14

3/14

1/14

Probability of
node failure

10-1

10-2

10-3

10-4

Probability of

system failure

2.47101 × 10 -3

1.94486 × 10 -6

1.33884 x 10 .7

9.36835 x 10 -8
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Five Nodes, Double Ring

Number of

failed nodes Architecture

Number of

links

10

6

4

2

Number of minimal

spanning trees

80

8

4

0

Probability of

system failure

9.99800 x 10 -8

2.99970 x 10 .4

1.99990 x 10 .4

1.00000 x 100

Probability of
architecture

1/2
1/2

Probability of
node failure

10-1

10-2

10-3

10-4

Probability of

system failure

4.511575 x 10 -2

5.095997 x 10 -4

6.589337 x 10 -6

2.998600 x 10 -7

Six Nodes, Double Ring

Number of

failed nodes Architecture

Number of

links

12

8

6

4

4

Number of minimal

spanning trees

192

16

8

0

0

Probability of

system failure

1.49960 × 10 -7

3.99940 x 10 -4

2.99970 x 10 -4

1.00000 x 10 °

1.00000 x 10°

Probability of
architecture

2/5
2/5
1/5

Probability of
node failure

10-1

10-2

10-3

10-4

Probability of

system failure

7.505259 x 10 -2

9.072244 x 10 -4

1.152253 x 10 -5

4.797161 x 10 -7
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Seven Nodes, Double Ring

Number of Number of Number of minimal Probability of Probability of

failed nodes Architecture links spanning trees system failure architecture

!
14

10

1 8

2 6

3 6

1 6

2 4

3 4

4 2

448

32

16

0

0

8

0

0

0

2.09912

4.99900

3.99940

1.00000

1.00000

2.99970

1.00000

1.00000

1.00000

x 10 -7

x 10 -4

x 10 -4

x 10°

× 10°

x 10 -4

x 10 0

x 10 °

x 10 °

1/3

1/3

1/3
1/5

2/5
1/5

1/5

Probability of
node failure

10-1

10-2

10-3

10-4

Probability of

system failure

1.03963 x 10 -1

1.39190 x 10 -3

1.76462 x 10 -5

6.99457 x 10 .7

Eight Nodes, Double Ring

Number of Probability of Probability of

failed nodes Architecture system failure architecture

0

1

2

2

2

2

3

3

3

3

3

1

2

3

4

1

2

3

4

5

Number of Number of minimal

links spanning trees

16 1024

12 64

10 32

8 0

8 0

8 0

8 16

6 0

6 0

4 0

4 0

2.79887 x 10 .7

5.99850 x 10 .4

4.99900 x 10 -4

1.00000 x 10°

1.00000 x 10°

1.00000 x 10°

3.99940 x 10 -4

1.00000 x 10°

1.00000 x 10 °

1.00000 x 10 o

1.00000 x 10°

2/7

2/7

2/7
1/7

1/7

2/7
2/7

1/7

1/7

Probability of
node failure

10-1

10-2

10-3

10-4

Probability of

system failure

1.39908 x 10 -1

1.97465 x 10 -3

2.49751 x 10 -5

9.59175 x 10 .7
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Nine Nodes,Double Ring

Numberof Numberof
failednodes Architecture links

0
1
2
2
2
2
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4

1
2
3
4
1
2
3
4
5
6
7
1
2
3
4
5
6
7
8

18
14
12
10
10
10
10
8
8
8
6
6
6
8
6
6
6
6
4
4
2

Numberofminimal
spanningtrees

2304 3.59832
128 6.99790
64 5.99850
0 1.00000
0 1.00000
0 1.00000

32 4.99900
0 1.00000
0 1.00000
0 1.00000

0 1.00000

0 1.00000

0 1.00000

16 3.99940

0 1.00000

0 1.00000

0 1.00000

0 1.00000

0 1.00000

0 1.00000

0 1.O0000

Probability oI Frot)aDmty oi

system failure architecture

x 10 -7

x 10 -4

x 10 -4

x 10 °

x 10°

x 10°

x 10 -4

x 10o

x 10 °

x 10 °

x 10 °

x 10 °

x 10°

xlO 4

x 10 °

x 10 °

x 10°

x 10°

x 10 °

x 100

x 100

1/4

1/4
1/4
1/4

3/28

3/14
3/14

3/28

3/28

3/14

1/28
1/14
1/7
1/14

2/7
1/14
1/14

3/14
1/14

Probability' of

node failure

10-1

10-2

10-3

10-4

I Probability of

system failure

1.77097 x 10 -1

2.64726 x 10 -3

3.49611 x 10 -5

1.25876 x 10 -6
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